Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 383: 39-54, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38346451

RESUMO

Maize is an important food crop that is affected by salt stress during growth, which can hinder plant growth and result in a significant decrease in yield. The application of plant growth-promoting rhizobacteria can improve this situation to a certain extent. However, the gene network of rhizosphere-promoting bacteria regulating the response of maize to salt stress remains elusive. Here, we used metabolomics and transcriptomics techniques to elucidate potential gene networks and salt-response pathways in maize. Phenotypic analysis showed that the Bacillus atrophaeus treatment improved the plant height, leaf area, biomass, ion, nutrient and stomatal indicators of maize. Metabolomic analysis identified that differentially expressed metabolites (DEMs) were primarily concentrated in the arginine, proline and phytohormone signaling metabolic pathways. 4-Hydroxyphenylacetylglutamic acid, L-histidinol, oxoglutaric acid, L-glutamic acid, L-arginine, and L-tyrosine were significantly increased in the Bacillus atrophaeus treatment. Weighted gene coexpression network analysis (WGCNA) identified several hub genes associated with salt response: Zm00001eb155540 and Zm00001eb088790 (ABC transporter family), Zm00001eb419060 (extra-large GTP-binding protein family), Zm00001eb317200 (calcium-transporting ATPase), Zm00001eb384800 (aquaporin NIP1-4) and Zm00001eb339170 (cytochrome P450). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that genes related to plant hormone signal transduction and the MAPK signaling pathway were involved in the response to the effect of Bacillus atrophaeus under salt stress. In the plant hormone signal transduction pathway, 3 differentially expressed genes (DEGs) encoding EIN3/EILs protein, 3 DEGs encoding GH3, 1 DEG encoding PYR/PYL and 6 DEGs encoding PP2C were all upregulated in Bacillus atrophaeus treatment. In the MAPK signaling pathway, 2 DEGs encoding CAT1 and 2 DEGs encoding WRKY22/WRKY29 were significantly upregulated, and the expression of DEGs encoding RbohD was downregulated by the application of Bacillus atrophaeus. In conclusion, the application of Bacillus atrophaeus under salt stress regulated key physiological and molecular processes in plants, which could stimulate the expression of genes related to ion transport and nutrients in maize, alleviate salt stress and promote maize growth to some extent, deepening our understanding of the application of Bacillus atrophaeus under salt stress to improve the salt-response gene network of maize growth.


Assuntos
Bacillus , Transcriptoma , Zea mays , Zea mays/genética , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
Environ Sci Pollut Res Int ; 31(2): 2481-2494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066280

RESUMO

The utilization of plant growth-promoting rhizobacteria (PGPR) has emerged as a prominent focus in contemporary research on soil microbiology, microecology, and plant stress tolerance. However, how PGPR influence the soil bacterial community and related ecological functions remains unclear. The aim of this study was to investigate the effects of three natural PGPR inoculations (YL07, Planococcus soli WZYH02; YL10, Bacillus atrophaeus WZYH01; YL0710, Planococcus soli WZYH02 and Bacillus atrophaeus WZYH01) on maize (Zea mays L.) growth under two salt stress conditions (S1, ECe = 2.1 ~ 2.5 dS/m; S2, ECe = 5.5 ~ 5.9 dS/m). The results revealed that compared to the control (CK), the average plant height of maize seedlings significantly increased by 27%, 23%, and 29% with YL07, YL10, and YL0710 inoculation under S1 conditions, respectively, and increased by 30%, 20%, and 18% under S2 conditions, respectively. Moreover, PGPR inoculation positively influenced the content of superoxide dismutase, catalase, soluble sugar, and proline in maize under salt stress. Subsequent analysis of alpha diversity indices, relative microbial abundance, principal coordinate analysis, cladograms, and linear discriminant analysis effect size histograms indicated significant alterations in the rhizosphere microbial community due to PGPR inoculation. FAPROTAX analysis demonstrated that YL10 inoculation in S2 rhizosphere soil had a notable impact on carbon cycle functions, specifically chemoheterotrophy, fermentation, and phototrophy. Thus, this study provides evidence that PGPR inoculation improves soil microbial communities and plant indices under salt stress. These findings shed light on the potential of PGPR as a viable approach for enhancing plant stress tolerance and fostering sustainable agricultural practices.


Assuntos
Bacillus , Microbiota , Solo/química , Zea mays , Microbiologia do Solo , Raízes de Plantas
3.
Chem Sci ; 14(38): 10602-10609, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37800003

RESUMO

Terminal Ru(v)-imido species are thought to be as reactive to group transfer reactions as their Ru(v)-oxo homologues, but are less studied. With the electron-rich corrole ligand, relatively stable and isolable Ru(v)-arylimido complexes [Ru(tBu-Cor)(NAr)] (H3(tBu-Cor) = 5,15-diphenyl-10-(p-tert-butylphenyl)corrole, Ar = 2,4,6-Me3C6H2 (Mes), 2,6-(iPr)2C6H3 (Dipp), 2,4,6-(iPr)3C6H2 (Tipp), and 3,5-(CF3)2C6H3 (BTF)) can be prepared from [Ru(tBu-Cor)]2 under strongly reducing conditions. This type of Ru(v)-monoarylimido corrole complex with S = ½ was characterized by high-resolution ESI mass spectrometry, X-band EPR, resonance Raman spectroscopy, magnetic susceptibility, and elemental analysis, together with computational studies. Under heating/light irradiation (xenon lamp) conditions, the complexes [Ru(tBu-Cor)(NAr)] (Ar = Mes, BTF) could undergo aziridination of styrenes and amination of benzylic C(sp3)-H bonds with up to 90% product yields.

4.
Heliyon ; 9(2): e13510, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846674

RESUMO

Presently, the effects of crop roots on crop root zone thermal characteristics are poorly understood, and new fertilizers are rarely considered from the perspective of changing crop root zone thermal characteristics. This study explored the effect of applying two new fertilizers, multiwalled carbon nanotubes (MWCNTs) and Bacillus atrophaeus (B. atrophaeus), on the crop root zone thermal characteristics of saline farmland soils through in situ measurements. The results showed that MWCNTs and B. atrophaeus could indirectly affect crop root zone thermal characteristics by changing the crop root growth. Combined application of MWCNTs and B. atrophaeus could promote both to induce positive effects, promote crop root growth, and significantly alleviate the adverse effects of soil salinization. The thermal conductivity and heat capacity of the shallow root zone were reduced due to the presence of crop roots, while the opposite was true in the deep root zone. For example, the thermal conductivity of the 0-5 cm rich root zone in the MWCNT treatment was 0.8174 W m-1 ·K-1, and the thermal conductivity of the poor root zone was 13.42% higher than that of the rich root zone. MWCNTs and B. atrophaeus can also change the spatial distribution of soil moisture, soil salt, and soil particle size characteristics by influencing the root-soil interactions and indirectly affecting crop root zone thermal characteristics. In addition, MWCNTs and B. atrophaeus could directly affect the root zone thermal characteristics by changing the soil properties. The higher the soil salt content was, the more obvious the effect of the MWCNTs and B. atrophaeus on the crop root zone thermal characteristics. The thermal conductivity and heat capacity of the crop root zone were positively correlated with the soil moisture content, soil salt content and soil particle specific surface area and negatively correlated with the soil particle size and the fresh and dry root weights. In summary, MWCNTs and B. atrophaeus significantly affected crop root zone thermal characteristics directly and indirectly and could adjust the temperature of the crop root zone.

5.
Angew Chem Int Ed Engl ; 62(9): e202215891, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596721

RESUMO

Trifluoromethyl-bearing 5-membered rings are prevalent in bioactive molecules, but modular approaches to these compounds by functionalization of robust C(sp3 )-H bonds in a direct and selective manner are extremely challenging. Herein we report the rhodium-catalyzed α-CF3 -α-alkyl carbene insertion into C(sp3 )-H bonds of a broad range of substrates to access 7 types of CF3 -bearing saturated 5-membered carbo- and heterocycles. The reaction is particularly effective for benzylic C-H insertion exerting good site-, diastereo- and enantiocontrol, and applicable to the synthesis of chiral CF3 analogues of bioactive molecules. Ruthenium α-CF3 -α-alkyl carbene complexes underwent stoichiometric reactions to give C-H insertion products, lending evidence for the involvement of metal α-CF3 -α-alkyl carbene species in the catalytic cycle. DFT calculations revealed that the π⋅⋅⋅π attraction and intra-carbene C-H⋅⋅⋅F hydrogen bond elucidate the origin of selectivity of the benzylic C-H insertion reactions.

6.
Comput Biol Chem ; 100: 107731, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35907293

RESUMO

Chromosome karyotyping analysis is a vital cytogenetics technique for diagnosing genetic and congenital malformations, analyzing gestational and implantation failures, etc. Since the chromosome classification as an essential stage in chromosome karyotype analysis is a highly time-consuming, tedious, and error-prone task, which requires a large amount of manual work of experienced cytogenetics experts. Many deep learning-based methods have been proposed to address the chromosome classification issues. However, two challenges still remain in current chromosome classification methods. First, most existing methods were developed by different private datasets, making these methods difficult to compare with each other on the same base. Second, due to the absence of reproducing details of most existing methods, these methods are difficult to be applied in clinical chromosome classification applications widely. To address the above challenges in the chromosome classification issue, this work builds and publishes a massive clinical dataset. This dataset enables the benchmarking and building chromosome classification baselines suitable for different scenarios. The massive clinical dataset consists of 126,453 privacy preserving G-band chromosome instances from 2763 karyotypes of 408 individuals. To our best knowledge, it is the first work to collect, annotate, and release a publicly available clinical chromosome classification dataset whose data size scale is also over 120,000. Meanwhile, the experimental results show that the proposed dataset can boost performance of existing chromosome classification models at a varied range of degrees, with the highest accuracy improvement by 5.39 % points. Moreover, the best baseline with 99.33 % accuracy reports state-of-the-art classification performance. The clinical dataset and state-of-the-art baselines can be found at https://github.com/CloudDataLab/BenchmarkForChromosomeClassification.


Assuntos
Algoritmos , Benchmarking , Cromossomos/genética , Humanos
7.
Front Plant Sci ; 13: 891372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599881

RESUMO

With the increasing shortage of land resources and people's attention to the ecological environment, the application of microbial fertilizer with natural soil microorganisms as the main component has attracted increasing attention in saline agriculture. In this study, two salt-tolerant strains, YL07 (Bacillus atrophaeus) and YL10 (Planococcus soli), were isolated from maize (Zea mays L.) rhizosphere soil with a saturated conductivity (ECe) of 6.13 dS/m and pH of 8.32 (Xinjiang, China). The effects of B. atrophaeus WZYH01 (YL07) and Planococcus soli WZYH02 (YL10) on the growth and development of maize (Zea mays L.) under salt stress (ECe = 5.9 dS/m) were further studied. The results showed that compared with uninoculation, inoculation with B. atrophaeus WZYH01 and Planococcus soli WZYH02 significantly improved maize growth performance, biomass yield, and antioxidant levels under salt stress, and the effect of Planococcus soli WZYH02 was more prominent than the effect of B. atrophaeus WZYH01. Moreover, inoculation with B. atrophaeus WZYH01 and Planococcus soli WZYH02 protected maize from salt stress by regulating plant hormone [IAA and abscisic acid (ABA)] levels and increasing nutrient acquisition. In addition, the tested strains were most efficient for maize growth and health, increasing the content of K+ accompanied by an effective decrease in Na+ in maize tissues. The transcription levels of salt tolerance genes (ZMNHX1, ZMNHX2, ZMHKT, ZMWRKY58, and ZMDREB2A) in inoculated maize were also dramatically higher than the transcription levels of the specified salt tolerance genes in uninoculated maize. In conclusion, B. atrophaeus WZYH01 and Planococcus soli WZYH02 can alleviate the harmful effects of salt stress on crop growth, thereby promoting sustainable agricultural development.

8.
Angew Chem Int Ed Engl ; 61(21): e202200748, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35183066

RESUMO

Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.

9.
Biology (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34827107

RESUMO

To investigate the diversity and structure of soil bacterial and fungal communities in saline soils, soil samples with three increasing salinity levels (S1, S2 and S3) were collected from a maize field in Yanqi, Xinjiang Province, China. The results showed that the K+, Na+, Ca2+ and Mg2+ values in the bulk soil were higher than those in the rhizosphere soil, with significant differences in S2 and S3 (p < 0.05). The enzyme activities of alkaline phosphatase (ALP), invertase, urease and catalase (CAT) were lower in the bulk soil than those in the rhizosphere. Principal coordinate analysis (PCoA) demonstrated that the soil microbial community structure exhibited significant differences between different salinized soils (p < 0.001). Data implied that the fungi were more susceptible to salinity stress than the bacteria based on the Shannon and Chao1 indexes. Mantel tests identified Ca2+, available phosphorus (AP), saturated electrical conductivity (ECe) and available kalium (AK) as the dominant environmental factors correlated with bacterial community structures (p < 0.001); and AP, urease, Ca2+ and ECe as the dominant factors correlated with fungal community structures (p < 0.001). The relative abundances of Firmicutes and Bacteroidetes showed positive correlations with the salinity gradient. Our findings regarding the bacteria having positive correlations with the level of salinization might be a useful biological indicator of microorganisms in saline soils.

10.
Org Lett ; 23(17): 6993-6997, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34428074

RESUMO

A chiral FeII(N4) complex (N4 = (R,R)-N,N'-bis(2-isopropylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine) was developed for the asymmetric conjugate addition of silyl enol ethers, including both acyclic ones and cyclohexenone-derived ones, to α,ß-unsaturated 2-acyl imidazoles. This FeII complex is an effective chiral Lewis acid and was applied in the synthesis of an array of chiral 1,5-dicarbonyl synthons and cyclohexenone derivatives with high yields and enantioselectivities (up to 99% ee).

11.
Angew Chem Int Ed Engl ; 60(34): 18619-18629, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-33847064

RESUMO

Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.

12.
Huan Jing Ke Xue ; 42(4): 1615-1625, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742796

RESUMO

A six-day ozone pollution episode in Guangzhou in early October 2018 was analyzed with the application of a Lagrangian photochemical trajectory model to trace the sources of ozone, quantify the contributions of different regions, and evaluate the effects of emission reduction measures targeted at different emission sectors and different precursors on ozone pollution. The results showed that during the ozone pollution episode, the maximum daily 8 h ozone exceeded 160 µg·m-3 and the highest value reached 271 µg·m-3. The average concentrations of nitrogen oxides and volatile organic compounds (VOCs) were (77.7±42.8) µg·m-3 and (71.9±56.2) µg·m-3, respectively. Aromatics and alkenes were the dominant reactive VOCs, with contributions of 38% and 30% to·OH reactivity and 51% and 16% to ozone formation potential, respectively. The ozone pollution in Guangzhou during this episode was affected by three types of air masses, with the primary source regions of Guangzhou, Guangdong Province, and regions outside Guangdong Province. For all three air mass types, ozone production in these source region was controlled by VOCs. Sensitivity tests showed that, in the primary source regions, reducing the emissions of VOCs is more effective than reducing NOx in terms of reducing ozone concentrations. Under the condition of full emission reduction, regulating traffic emissions could substantially reduce ozone levels by 14.6%-21.0% in Guangzhou, which was a more significant reduction than regulating controlled industry (8.4%-15.3%), power plant (0.9%-6.2%) and residential (2.3%-4.7%) emissions. However, the traffic emission reduction is not as effective (induced ozone reduction<10%) when the emissions reduction ratio is lower than 90%. In addition, biogenic emissions in the Pearl River Delta also substantially contributed to the ozone levels under certain circumstances, as indicated by the ozone reduction up to 19% when biogenic emissions were shut off.

13.
Angew Chem Int Ed Engl ; 59(38): 16561-16571, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32500643

RESUMO

Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII (2-Me2 -BQPN)(OTf)2 ], which bears a tetradentate N4 ligand (Me2 -BQPN=(R,R)-N,N'-dimethyl-N,N'-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2 O2 ) as oxidant under mild conditions. Experimental studies (including 18 O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV (O)2 reaction intermediate as an active oxidant. This cis-[FeII (chiral N4 ligand)]2+ /H2 O2 method could be a viable green alternative/complement to the existing OsO4 -based methods for asymmetric alkene dihydroxylation reactions.

14.
Chem Sci ; 11(8): 2243-2259, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32180931

RESUMO

Alkyl-substituted carbene (CHR or CR2, R = alkyl) complexes have been extensively studied for alkylcarbene (CHR) ligands coordinated with high-valent early transition metal ions (a.k.a. Schrock carbenes or alkylidenes), yet dialkylcarbene (CR2) complexes remain less developed with bis(dialkylcarbene) species being little (if at all) explored. Herein, several group 8 metal porphyrin dialkylcarbene complexes, including Fe- and Ru-mono(dialkylcarbene) complexes [M(Por)(Ad)] (1a,b, M = Fe, Por = porphyrinato dianion, Ad = 2-adamantylidene; 2a,b, M = Ru) and Os-bis(dialkylcarbene) complexes [Os(Por)(Ad)2] (3a-c), are synthesized and crystallographically characterized. Detailed investigations into their electronic structures reveal that these complexes are formally low-valent M(ii)-carbene in nature. These complexes display remarkable thermal stability and chemical inertness, which are rationalized by a synergistic effect of strong metal-carbene covalency, hyperconjugation, and a rigid diamondoid carbene skeleton. Various spectroscopic techniques and DFT calculations suggest that the dialkylcarbene Ad ligand is unique compared to other common carbene ligands as it acts as both a potent σ-donor and π-acceptor; its unique electronic and structural features, together with the steric effect of the porphyrin macrocycle, make its Fe porphyrin complex 1a an active and robust catalyst for intermolecular diarylcarbene transfer reactions including cyclopropanation (up to 90% yield) and X-H (X = S, N, O, C) insertion (up to 99% yield) reactions.

15.
Environ Pollut ; 257: 113602, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31744680

RESUMO

The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.


Assuntos
Cádmio/química , Recuperação e Remediação Ambiental , Poluentes do Solo/química , Adsorção , Monitoramento Ambiental , Poluição Ambiental , Solo
16.
Angew Chem Int Ed Engl ; 58(45): 16297-16306, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31486262

RESUMO

Supramolecular ensembles adopting ring-in-ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter-ring closed-shell metallophilic interactions, such as d10 -d10 AuI -AuI interactions, have been well-documented, the ring-in-ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring-in-ring structure of a AuI -thiolate Au12 cluster formed by recrystallization of a AuI -thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene-2-thiolate ligand. The ring-in-ring AuI -thiolate Au12 cluster features inter-ring AuI -AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2 Cl2 , CHCl3 , and CH2 Cl2 /MeCN. The cluster-to-cluster transformation process was monitored by 1 H NMR and ESI-MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the "ring-in-ring⇌ [2]catenane" interconversions.

17.
Chemistry ; 25(46): 10828-10833, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31271674

RESUMO

Ruthenium(II) complexes bearing a tridentate bis(N-heterocyclic carbene) ligand reacted with iminoiodanes (PhI=NR) resulting in the formation of isolable ruthenium(III)-amido intermediates, which underwent cleavage of a C-N bond of the tridentate ligand and formation of an N-substituted imine group. The RuIII -amido intermediates have been characterized by 1 H NMR, UV/Vis, ESI-MS, and X-ray crystallography. DFT calculations were performed to provide insight into the reaction mechanism.

18.
J Am Chem Soc ; 141(22): 9027-9046, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31064182

RESUMO

Reactivity study of novel metal carbene complexes can offer new opportunities in catalytic carbene transfer reactions as well as in other synthetic protocols. Metal complexes with quinoid carbene (QC) ligands are assumed to be key intermediates in a variety of metal-catalyzed QC transfer reactions using diazo quinones, which demands development of the chemistry of QC transfer of well characterized metal-QC complexes. Herein we report the isolation and QC transfer of ruthenium porphyrins [Ru(Por)(QC)] which contribute the first examples of (i) structurally characterized metal-QC complex (by X-ray crystallography) and (ii) isolated metal-QC complex that undergoes QC transfer reaction. The complexes [Ru(Por)(QC)] were prepared from reaction of [Ru(Por)(CO)] with diazo quinones and exhibited dual reactivity, i.e., hydrogen atom transfer (HAT) as well as QC transfer. The stoichiometric QC transfer reactions from these Ru-QC complexes to nitrosoarenes (ArNO) afforded nitrones in up to 90% yield, and the corresponding catalytic reactions were also developed. Both the stoichiometric and catalytic reactions for a series of QC ligands bearing electron-donating and -withdrawing substituents showed a reverse substituent effect on the QC transfer reactivity. Complexes [Ru(Por)(QC)] are also reactive toward C-H and X-H (X = N, S) bonds and can catalyze aerobic oxidation of 1,4-cyclohexadiene; their stoichiometric HAT reactions with unsaturated hydrocarbons gave product yields of up to 88%. The unique dual reactivity and electronic feature of [Ru(Por)(QC)] were studied by spectroscopic means and density functional theory (DFT) calculations.

19.
Chem Commun (Camb) ; 55(25): 3606-3609, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30843908

RESUMO

A series of trans-dichloroiridium(iv)-salen complexes were synthesized and structurally characterized by spectroscopic means and X-ray crystal structures. These Ir(iv) complexes are able to catalyze intramolecular C-H amination of aryl azides. The catalytic amination was drastically accelerated under microwave-assisted conditions, and possibly involves Ir-imido intermediates as supported by high-resolution ESI-MS analysis.

20.
Chemistry ; 24(54): 14400-14408, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30069954

RESUMO

Five-coordinated d6 metal complexes are relatively uncommon but can be useful building blocks for the construction of supramolecular assemblies. In this work we have used the strong trans effect of aryl and alkyl ligands for the synthesis of luminescent five-coordinated organoiridium porphyrins, which are useful building blocks for the construction of metallamacrocycles and metallacages of iridium through metal-ligand interactions at the axial positions of iridium porphyrins (Ir(por)). Diverse di- or tritopic aryl or alkyl linkers were employed as the axial ligands to coordinate Ir(por) at an axial position to afford di- or trinuclear five-coordinated [{Ir(ttp)}n (X)] (ttp=5,10,15,20-tetrakis(p-tolyl)porphyrinato(2-); n=2, X=diaryl; n=3, X=trialkyl). [{Ir(ttp)}n (X)] could be further coordinated with ditopic isocyanide or pyridine ligands at the other axial site of each Ir(ttp) to give unprecedented cyclic supramolecular metalloporphyrin assemblies, including tetra- and hexanuclear metallamacrocycles and hexanuclear metallacages. The Ir(por) metallamacrocycles and metallacages display phosphorescence in the near-infrared region with quantum yields of around 2 % and microsecond emission lifetimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...